Asymptotic bifurcation for a semilinear elliptic problem on the half-line
نویسنده
چکیده
An asymptotically linear elliptic equation on the half-line is considered. A global branch of positive solutions bifurcating from infinity is obtained. Classical global bifurcation theory cannot be applied due to the unboundedness of the domain and recent developments of degree theory are used to prove bifurcation.
منابع مشابه
Structure of the solution set for a class of semilinear elliptic equations with asymptotic linear nonlinearity
We consider a semilinear elliptic equation with asymptotic linear nonlinearity applying bifurcation theory and spectral analysis. We obtain the exact multiplicity of the positive solutions and a very precise structure of the solution set, which improves the previous knowledge of the problem.
متن کاملBlow up Points of Solution Curves for a Semilinear Problem
We study a semilinear elliptic equation with an asymptotic linear nonlinearity. Exact multiplicity of solutions are obtained under various conditions on the nonlinearity and the spectrum set. Our method combines a bifurcation approach and Leray–Schauder degree theory.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملBifurcation in a variational problem on a surface with a constraint
We describe a variational problem on a surface under a constraintof geometrical character. Necessary and sufficient conditions for the existence ofbifurcation points are provided. In local coordinates the problem corresponds toa quasilinear elliptic boundary value problem. The problem can be consideredas a physical model for several applications referring to continuum medium andmembranes.
متن کامل